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ABSTRACT

The analytical solution of the heat conduction equation for a
gun tube (circular, thick-walled cylinder) assumed, for simplicity,
to be of infinite length, is obtained. The temperature function is
assumed to have axial and angular symmetry and, therefore, is depen-
dent only upon time and radial distance. The axial flow has been
neglected because the projectile moves through the tube at a much
faster rate than heat can penetrate the tube. The initial and
boundary conditions have been considered as close as possible to
those encountered during the repeated firing of a gun. The tempera-
ture distribution in a barrel can be determined provided that the
propellant gas temperature during the firir of each round is known
and that the nature of the heat transfer from the gas to the barrel
wall is known.
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NOMENCLATURE

a = inside radius of gun tube

b = outside radius of gun tube

t = time

hj,h2 = gas and natural convection coefficients of guin tube,
respectively

K = thermal conductivity of gun tube

r = radial distance of a point from the axis of the cylinder

T(r,t) = temperature of point r at time t

T (t) = propellant gas temperature function
Ta(rt) = a Oransient part of temperature of the total temperature

Tb(r,t) = a transient part of temperature of the total temperature

Ts(r) = a steady-state part of temperature of the total temperature

TA = ambient temperature

a = thermal diffusivity of barrel material

Bn  eigenvalues of equation (30)

JOr,Yo Bessel functions of first and second kinds of order zero,
respectively

J, Y, Bessel functions of first and second kinds of order one,
respectively

10,K o = modified Bessel functions of first and second kinds of
order zero, respectively

ii',= modified Bessel functions of first and second kinds of
order one, respectively

f(r) = initial temperature distribution
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INTRODUCTION

The solution to the initial-boundary value problem for the
conduction of heat in a thick-walled cylinder is of considerable
technological importance, particularly, in the gun tube heat
transfer analysis. These problems have consequently attracted
considerable attention, and a number of special solutions'- 6

have been developed. Mow, Pascual, and Pascale' dealt with the
problem of radial flow of heat in a gun tube assumed to be
infinitely long. In their investigations, the initial and boundary
conditions were assumed to be T(r,t) = 0 for t < 0, T(a,t) = (t)
for t > 0, and T(b,t) = 0 for all t. Apparently, the surface
conductance on both inner and outer surfaces of a gun tube has
been disregarded in their analysis. A similar problem, with a
convective boundary condition on the outer surface of a gun tube,
was solved by Pascual, Zveig, and Sutherland.2 By virtue of the
fact that the initial condition was assumed to be zero in the above
two investigations, the problem solved by these investigators is
essentially the first round problem. Comenetz3 gave a solution for
the temperature distribution in a hollow cylinder of infinite length
supplied with heat through the inner surface. The rate of heat
input was permitted to vary linearly (or at most quadratically) with
time and the initial temperature of the hollow cylinder was assumed
to be zero, A more general solution of heat flow .in a finite, hollow,
circular cylinder was given by Olcer.4 However, Olcer's method is
very time-consuming and difficult to obtain desirable numerical results.
fu solve the gun barrel heat-transfer problem practically, a relatively
simple solution that closely approximates the actual firing conditions
of the gun is necessary. This report is intended to serve this
purpose.

OBJECTIVE

One of the many causes of gun barrel failure occurs when the
effective thermal stress level in the interior of the small caliber
gun tube exceeds the yield strength of the barrel material.

To determine the thermal stresses in a barrel, the temperature
distribution within a barrel must first be determined. Therefore,
the purpose of this investigation is to obtain the analytical solution
of the heat conduction equation for a gun tube subjected to an arbi-
trary initiel condition and to boundary conditions that are as close
as possible to those encountered during the actual single and repeated
firin g.
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FORMULATION OF THE PROBLEM

The unsteady temperature field in a homogeneous, isotropic gun
tube is assumed to have axial and angular symmetry and, therefore,
is dependent only upon time and radial distance. For simplicity, the
gun tube is assumed to be of infinite length, and the thermal prop-
erties assumed to be independent of the temperature for each small
time-interval during each firing round. Then the heat flow in a gun
tube is governed by the well-known Fourier heat conduction equation.
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2T + I a < r < b, t 0 (1)

where a > 0 denotes thermal diffusivity. In addition, the following
initial and boundary conditions are specified for T(r,t):

T(r,O) = f(r) ; a < r < b, t = 0 (2)

KT -h1[Tg(t)-T] ; r = a, t > 0 (3)

aT

K T -h2[T-TA] ; r :b, t > 0 (4)K r A

where Tg(t) is the propellant gas temperature function at the bore
surface, TA is the ambient temperature, f(r) is the initial temperature
distribution at the beginning of each small time-increment, or the
beginning of each round, h, and h2 are respectively gas and natural
convection coefficients, and K is the thermal conductivity of the gun
tube.

The convection Loefficients, h, and h2, at the bore surface and
a' the outer surface of a barrel may be assumed to vary at each small
time-interval during each firing round. This justification introduces
a way to consider the radiation boundary conditions at the bore and
at the outer surfaces of a gun tube. The heat input is permitted to
vary with time; in general, the propellant gas temperature function
can be assumed to he a combination of various exponential functions.

METHOD OF SOLUTION

Since the boundary condition (3) is not homogene:us, the method
of separation of variables cannot be applied directly. The Laplace
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transform method is considered; however, the authors find that, if
the Laplace transform technique is used alone for solving this problem,
the inverse transform -is very difficult to obtain. The combination of
Laplace transform and separation of variables will be adopted.

Because of the linearity of the problem, the solution to this
problem is readily verified and may be written in the form

T(r,t) = Ta(r,t) + Ts(r) + Tb(r,t); a e r < b, t - 0 (5)

where Ta(r,t) satisfies the following equations:

a2 ra + L. at; a < r < b, t > 0 (6)

r Ta

K~ ThTa = -hiTg(t) ;r at>0(7)

aTa
K - - + h2Ta = 0 ; r b, t - 0 (8)

la(r,t) = 0 ; a - r b, t = 0 (9)

Ts(r) satisfies the following equations:

d2Ts +l dTs 0 a r b (10)

drf + r dr

K dr - -hITS = 0 r = a (11)

dTs

K dT + h2T = h2TA ; r b (12)
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and Tb(r,t) satisfies the following equations:

T + l 3Tb = T. a < r< b, t = 0 (13)3P r ar a t'

K 2r  -h Tb = ; r = a, t > O (14)

Kr I

K a + h Tb 0 ; r =b, t > 0 (15)

Tb(r,t) = f(r) - Ts(r) ; a r 5 b, t = 0 (16)

The solution for Ta(r,t) is the one that satisfies the homogeneous
differential equation (6) with nonhomogeneous boundary condition (7),
homogeneous boundary condition (8) and with zero initial temperature
distribution (9). The solution for T (r,t) will be obtained by use of the
method of Laplace transform. The proglem involving Ts(r) is one of a
steady-state temperature distribution that can be readily solved by the
usual technique of solving ordinary differential equations. Once the
problem regarding Ts(r) is solved, the problem concerning T5 (r,t) is com-
pletely defined and is the one with homogeneous differentia equation (13)
and boundary and initial conditions (14), (15) and (16). Since the boundary
conditions involving Tb(r,t) are homogeneous, Tb(r,t) can be obtained by
the method of separation of variables. When Ta(r,t), Ts(r), and Tb(r,t)
are obtained, then the complete solution to the problem formulated in
the previous section is given by equation (5).

SOLUTION

(A) Solution for Ta(r,t)

The Laplace transform of equation (6) is given by

d2T +1 p-
_+ dr - q2Ta  = 0; a < r < b (17)r dr



where q2  p/a and Ta is defined by

'I*
Ta - e-Pt Ta(rt)dt (18)

0

The complete solotion of the Bessel equation (17) is

Ta = Aio(qr) + BK(qr) (19)

where I and K are modified Bessel functions of order zero. The
constants A and B are determined so that Ta sa:isfies the Laplace
transform of equations (7) and (8), namely

Kd T - a -h T g(p) r a (20)

1 dr + 0 ; r b (21)dr

where Tg(p) e-Pt Tg(t)dt (22)

0

Substituting equation (19) into equations (20) and (21), one obtains

A [-hilo(qa) + KqI(qa)] - B [h.Ko(qa) + KqK.(qa)] = -h1Tg(p) (23)

and

A [h2Io(qb) + KqIi(qb)] + B [h2Ko(qb) - KqK,(qb)] = 0 (24)

Solving A and B from equations (23) and (24), and substituting into
equation (19), one obtains

T g(p)h~i[h2Ko(qb) - KqK;(qb)]Io(qr) - [hlo(qb) + Kqll(qb)]Ko(qr)}

A(P) (25)



where L(p) =[h,1 0 (qb) + KqI1(qb)] [h1K0(qa) + KqK,(qa)]

[11 0,(qa) - KqI,(qa)] [h K0(qb) - KqK,(qb)] (26)

Suppose

-h { [h K0(qb) - KqK(q)1qr - [h 10(qb) + KqI (qb)]K0(qr)) 27

Then equation (25) becomes

Ta =TgT1(2 )

Tis now determined by the Inversion Theorem, i.e.,

T) 7 [TI]

Y+ico

-1 e pt hit[h 2 K(qb)-KqK,(qb)]I10 (qr)-[h 10 (qb)+KqI,(qb)]K0 (qr)) dp2-t i L\rJ) (29)

The integrand is a single-valued function of p with simple poles at
62w~ wee~ are the roots of

[h 2 JO(b) - KsJ1(3b)] [h 1 Y0 (a) + KBY.(oa))

-[h J0 ( a) + KOJI(Ba)] [h12YO(ab) -K0Y 1(ab)] 0 (30)
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Since Io0 lr) J,0(Bnr), Ii(i~nr)= ian)

K%(isrr) =-4n2 [iJ (a r) + Yo( r)], and

K ~00nr) r/42 L-J,(Bn H + iR(0 r)

*1To find the residue at pole p -aB2, one needs

d6(p) - I d~p
dp I20.X dA

- a n - -n

" -I-- /a [hjI1(xa) + KxI0(Aa)] [h2K0(Ab) -KXKI(Ab)]

- b [-h I0(xa) + KAI1(xa)] [hzKz(Ab) - KAK0 (Ab)]

I- a [h.2I0(:*b) + KXIA(xb)] [hK (ha) + K.K0(#a)]

where equation (26) an h 0rcrecefua e7 haebe sd To (1

_____________ hKo(Aa) + KAK,(,a)]
h1 o(b KAIXT hK,,(xb) - KK&(xb)

-[h1jo(B3na) + KB nJ.(Ona)) -[h iYo(ana) T K~iY.(6na)] =(2

h2Jo('3nb) -e Kn JI(nb) h2Yc,(anb) Ksny (Onb



With the use of this result and the Wronskiakl relation, equation (.11)
can be written

1t 2 F K02 _ (h2+K20)
Aao d2 n Ip n)2

x = i~

(h)+K2-)[h 2 +K0)hJ b-KniOb
= 2 nl 1 on ni l aIn f

2ap2[-h i o~a)-K~nJI(a3na)] [h Jo(anb)-KnJ (anb)i

F (On) (33)
2czt32-h 1J0G3na).KiJ1 (aa)] [h2J8b)YK~nJi (Snb)]

where

F(8n) =(h2+K2) [hiJo(Bria)+KInJ(Ona)]2-(h 2+K202) Ch 2 1 b)-K~nJl(Onb)]2

(34)

The residue at the pole p =-a82 or x i~n 8 is

Jim (4 2)-e pt hl{[h2KO(Ab)-KxK,(xb)]I0 (Ar)-[h2I0(Ab)+KAI1 (Ab)]I%(xr)}p- (,2)

(35)
where

C0(sB ,r) = hj(n)Knlab]Oor-h2Y(n)KnjBb]oOr

(36)
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Thus,

TI(r,t) (37)' e-a~

n=1

j where

GS)= [hiJo(8na)+K~nJ1(6na)1[h2J ~bK~Ji8b)] (38)

Applying the Inversion Theorem to equation (28), one obtains

-~Applying the Convolution Theorem,8 one notes that

Tg(t) Uf9 lg(0)] and Tl(r,t) = '[T 1(r,p)]

And finally

t

Ta(rt (-'T)4d

itan1  Tgt4 e -n C0( j,r) G(Bn) d4

n=1 T
0
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(B) Solution for Ts(r)

The general solution of the differential equation (10) is

Ts(r) = Alog r + B (41)

where A and B are constants that are determined so that Ts satisfies
the boundary conditions (11) and (12).

Substituting equation (41) into equations (11) and (12) and
solving for A and B, one obtains

h h TA h h2 
1AA -h Az  1 2 ( --A- h h o

-h h b h2 b
hK bh lo K -hh og K .- ) +ah1 h log

h, (42)
(K -a h2 log a) TA

K h h I hhiog b
a

Substituting A and B into equation (41), one gets

TA  h)
T5(r) = h_ _ TA -- [h h log L + K a]; a r b

K( I h I+ h2 +hh b 1 2 a (43)K a b 
2 log

(C) Soiution for Tb(r,t)

Once T (r) has been obtained from equation (43), the initial con-
dition equaiion (16) involving Tb(r,t) ir completely defined. Since
the boundary conditions (14) and (15) are homogeneous, the homogeneous
differential equation (13) can be readily solved by separation of vari-
ables, The function Tb(r,t) = R(r) e(t) is a solution provided

(R" (44)4r

14



.4 4 - 4 - ...

Since the member on the left is a function of t alone and that on the
right is a function of r alone, they must be equal to a constant, say,
-52. Hence, one has equations

rR" + R' + 62rR = 0 (45)

+ =0 (46)

The equation in R is Bessel's equation. The complete solution for
R can be written

R(r) = A Jo(Br) + B Yo(er) (47)

The solution of equation (46) can be written

e(t) = C e -'82t (48)

where A, B, and C are constants that can be determined from equations
(14), (15), and (16). Under equations (14) and (15), one finds that

Tb(r,t) = - Dn e -aBit [hIYo(Sna) + KBnYi(Bna)] Jo(6nr) (49)
n=l

where 3 = Gn are the roots of the following equation

[h Jo(sb) - KBJ1('b)] [h Yo(6a) + KeY (sa)]

- [hiJo(sa) + KBJ1 (aa)] [h2Yo(Bb) - KBY1(Bb)] = 0 (50)

This equation can be noted to be identical to equation (30).

At t = 0, using equations (16) and (49), one has

f(r) - Ts(r) X1 Dn -o(Bn,r) (51)
n=l
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where 'o(Bn,r) [h Yo(na) + KUnYj(Ona)] Jo(Onr)

_ [hiJo(Ona) + KnJI(6ra)] Yo(Onr) (52)

The constants Dn can be determined by Jse of the fact that the
set of cylInder functions

-Co(n,r); n 1 1, 2, 3,

is an orthogonal set on the interval a - r < b. Hence, one obtains

" b
r Co(Bn,r) (f(r) - Ts(r)) dr

Dn = a (53)
b

r C (an,r) dr

a

In compact form, equation (49) can be written

Tb(r,t) = D R e n -o(an,r) (54)
n=l

where Dn is defined by equation (53), and C-o(n,r) is defined by equa-

tion (52).

SUMMARY

The analytical solution to the problem formulated in a previous
section is given by the sum of equations (40), (43), and (53). The gas
and the natural convection coefficients h, and h2, respectively, can be
assumed to be variable for each time interval. The initial temperature
distribution at the beginning of each time interval will be set equal
to the final temperature distribution of the previous time interval.
If the temperature distribution of a barrel under continuous firing
conditions is sought, the final temperature distribution of one firing
round will be considered as the initial temperature distribution of the
successive firing round.
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